A Differentiable Mapping of Mesh Cells Based on Finite Elements on Quadrilateral and Hexahedral Meshes
نویسندگان
چکیده
منابع مشابه
Adaptive Mesh Coarsening for Quadrilateral and Hexahedral Meshes
Mesh adaptation methods can improve the efficiency and accuracy of solutions to computational modeling problems. In many applications involving quadrilateral and hexahedral meshes, local modifications which maintain the original element type are desired. For triangle and tetrahedral meshes, effective refinement and coarsening methods that satisfy these criteria are available. Refinement methods...
متن کاملQuadrilateral and Hexahedral Element Meshes
This chapter explains techniques for the generation of quadrilateral and hexahedral element meshes. Since structured meshes are discussed in detail in other parts of this volume, we focus on the generation of unstructured meshes, with special attention paid to the 3D case. Quadrilateral or hexahedral element meshes are the meshes of choice for many applications, a fact that can be explained emp...
متن کاملMixed finite elements for elasticity on quadrilateral meshes
We present stable mixed finite elements for planar linear elasticity on general quadrilateral meshes. The symmetry of the stress tensor is imposed weakly and so there are three primary variables, the stress tensor, the displacement vector field, and the scalar rotation. We develop and analyze a stable family of methods, indexed by an integer r ≥ 2 and with rate of convergence in the L2 norm of ...
متن کاملAlgorithms for Quadrilateral and Hexahedral Mesh Generation
This lecture reviews the state of the art in quadrilateral and hexahedral mesh generation. Three lines of development – block decomposition, superposition and the dual method – are described. The refinement problem is discussed, and methods for octree-based meshing are presented.
متن کاملA New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes
Mesh smoothing (or r-refinement) are used in computer aided design, interpolation, numerical solution of partial differential equations, etc. We derive a new smoothing called parallelogram smoothing. The new smoothing tries to fit a given domain by the parallelograms. We present several numerical examples and compare our results against the traditional Laplacian smoothing. Presented numerical w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Methods in Applied Mathematics
سال: 2020
ISSN: 1609-4840,1609-9389
DOI: 10.1515/cmam-2020-0159